Управление водяным теплым полом: способы реализации и используемое оборудование 27.07.2014 – Опубликовано в: Теплый пол – Метки: , ,

 

Как можно реализовать управление теплым полом? В статье мы рассмотрим общие принципы реализации регулировки низкотемпературных систем отопления и используемые при этом приборы.

Идеальная система управления должна быть максимально удобной и понятной неподготовленному пользователю.

Идеальная система управления должна быть максимально удобной и понятной неподготовленному пользователю.

Автоматика против ручного управления

Начнем с решения базовой проблемы, которая встает перед любым владельцем системы теплого пола: нужна ли автоматизация? Или можно обойтись ручной регулировкой?

Давайте отделим, так сказать, мух от котлет.

Цена автоматизации будет очень сильно различаться для систем электрического и водяного теплого пола.

  • В первом случае для поддержания постоянной температуры пола достаточно установить терморегулятор с выносным датчиком, стоимость которого начинается от вполне гуманных 900-1000 рублей. Хочется ориентироваться на температуру воздуха, а не напольного покрытия? Тоже не проблема: цифровой терморегулятор с встроенным термодатчиком стоит  лишь в два-три раза дороже.
Система водяного теплого пола: детальное устройство

Электромеханический терморегулятор для электрического теплого пола.

Важный момент: терморегулятор с встроенным термодатчиком размещается на стене там, где нет воздушных потоков от открытых окон и прямых солнечных лучей. Если эти правила не соблюдены, вместо температуры воздуха в комнате он будет измерять что-то вроде уровня затененности спутников Марса.

  • Для систем, использующих теплоноситель, проблема куда сложнее. Нам предстоит динамически менять расход теплоносителя в одном или нескольких контурах, ориентируясь на показания внешнего термодатчика. Реализация обходится, как правило, в сумму от 20000 рублей и более.

Есть ли альтернатива автоматике для водяного теплого пола? Разумеется. Реализовать ручное управление коллектором и контурами более чем несложно своими руками.

Инструкция довольно  проста:

  • Между подачей и обратным трубопроводом перед коллектором монтируется перемычка.
  • Вместо тройника между перемычкой и подачей  устанавливается трехходовой клапан, работающий по принципу “или-или”: открывая подачу, он одновременно перекрывает перемычку.
  • Между перемычкой и коллектором монтируется дополнительный циркуляционный насос.
  • Сам коллектор снабжается дросселями на обратке для независимой регулировки каждого контура. На подаче устанавливаются отсекающие вентиля.
  • Кроме того, между подачей и обраткой после коллектора присутствует байпас – еще одна перемычка, которая не даст перегореть насосу, если расход теплоносителя будет перекрыт дросселями всех контуров сразу.
Принципиальная схема узла смешения с ручным управлением.

Принципиальная схема узла смешения с ручным управлением.

Понятно, что при использовании ручной схемы регулировки мы заметно экономим на стадии монтажа оборудования.

Какие проблемы экономия может создать нам в дальнейшем?

  • Ручное управление имеет большую инерционность. Прикрыв дроссель отдельного контура, или изменив положение трехходового клапана, мы получим заново стабилизировавшуюся температуру лишь через 4 – 6 часов.

Дело не только в медленном изменении температуры теплоносителя, но и в том, что массивная стяжка с трубами водяного теплого пола тоже нагреется или остынет не так чтобы быстро. А ведь ей еще предстоит передать тепло напольному покрытию, которое, в свою очередь, должно прогреть воздух комнаты…

  • Реальная температура воздуха и, соответственно, степень комфорта в помещении определяется не только тем, насколько нагрета вода в трубах. Освещенность стен и окон, температура и ветер на улице тоже сильно влияют на климат в доме.

Соответственно, подстраивать проходимость дросселирующей запорной арматуры придется как минимум несколько раз в сутки. Альтернатива – мириться с достаточно большим разбросом степени комфорта в течение дня.

Труба для теплого пола: выбор и общие принципы монтажа

При колебаниях внешней температуры в течение суток потери тепла через ограждающие конструкции будут сильно меняться.

Теперь, когда общая картина ясна, давайте выясним, что и как можно регулировать в автоматическом режиме.

Автоматизация

Общие принципы

Автоматическая регулировка расхода теплоносителя с контролем температуры может быть:

  • Групповой. Автоматика выполняет согласование температуры теплоносителя на выходе котла или в системе ЦО с температурой подачи низкотемпературного отопления. Ей предстоит превратить 70-90 градусов в 35-45 и поддерживать это значение при непрерывном изменении теплоотдачи в контурах (оно неизбежно при изменениях погоды на улице).
  • Индивидуальной. Расход теплоносителя через отдельный контур меняется таким образом, чтобы его обратка или воздух в комнате постоянно были прогреты до заданного нами значения.

Любопытно: если при радиаторном отоплении комфортное значение температуры воздуха лежит в диапазоне +22 – 24 градуса, то при использовании систем теплого пола оно снижается до +20. Этим, среди прочего, обусловлена экономичность низкотемпературного отопления: снижение средней температуры в помещении всего на 2С обеспечивает экономию тепла до 20%.

Как правило, автоматическое управление низкотемпературным отоплением включает устройства из обеих категорий. Таким образом, обеспечивается и максимальная экономия тепловой энергии, и максимальный комфорт, и возможность гибкой настройки температурных зон.

Оборудование

Теперь настала очередь типов оборудования, которые используются для автоматизации управления. Разумеется, перечислить все возможные модификации устройств в небольшой статье невозможно; мы отберем лишь несколько представителей из разных классов устройств.

Групповой контроллер отопления

Как следует из названия, это устройство позволяет регулировать температуру воды, подающуюся к коллектору.

Рассмотрим возможности типичного представителя – контроллера Valtec K-100.

Система Теплый пол: особенности, преимущества, монтаж

На фото – контроллер для систем теплого пола ValtecK-100 в базовой комплектации.

  • Устройство работает от напряжения в 24 вольта и может вполне безопасно использоваться в банях и саунах. Впрочем, защиты от повышенной влажности производитель не обещает. Адаптер для подключения к обычной сети (220 вольт переменного тока) прилагается.
  • Регулировка обеспечивается подачей управляющего сигнала с напряжением до 10 вольт на сервопривод, приводящий в движение клапан регулировки проходимости. Сам клапан в комплект не входит. Подразумевается, что он будет смонтирован перед перемычкой на подающем трубопроводе и будет управлять поступлением горячей воды во вторичный контур, включающий коллекторы.
  • Устройство комплектуется погружным датчиком для контроля температуры теплоносителя и выносным датчиком, измеряющим температуру воздуха. Максимальное количество подключаемых к прибору датчиков – 10.
  • Прибор – программируемый и может подключаться к компьютеру через интерфейс RS-485. Этот же интерфейс предусматривает обмен данных с другими устройствами – разумеется, при наличии у них соответствующего разъема.
  • Режим управления может быть не только автоматическим: благодаря возможности программирования его можно задать вручную. В частности, блок управления теплым полом способен отслеживать изменения температуры на уличном датчике и превентивно поднимать или опускать температуру теплоносителя.

Термостат

Выносное устройство способно измерять температуру в комнате и транслировать результат измерений блоку управления. Им же может осуществляется дистанционное управление заданной температурой (разумеется, при наличии управляемых клапанов с сервоприводами).

Термостаты могут быть проводными или соединяться с прочими устройствами по радиоканалу. Приборы монтируются с соблюдением уже упомянутых условий – вдали от сквозняков и прямых солнечных лучей.

Радиотермостат с возможностью программирования позволяет автоматически регулировать температуру контура теплого пола.

Радиотермостат с возможностью программирования позволяет автоматически регулировать температуру контура теплого пола.

Клапан

Этот класс устройств предназначен уже для непосредственного управления потоком теплоносителя: клапан устанавливается в разрыв трубопровода или вместо тройника на перемычке. Он управляется сервоприводом, который приводит в движение шток. Как правило, эти устройства изготавливаются из латуни и рассчитаны на рабочее давление до 16 атмосфер.

Полезно: в зависимости от исходного состояния клапаны подразделяются на нормально открытые и нормально закрытые. В зависимости от количества каналов для подключения – на трехпроходные и двухпроходные.

Трехпроходной нормально закрытый клапан.

Трехпроходной нормально закрытый клапан.

Сервопривод

Чтобы клапан открылся или закрылся, нужно нажать на его шток. Эта функция возлагается на сервопривод – несложный и довольно медлительный механизм, обеспечивающий, впрочем, довольно значительное для его размеров усилие в сотни ньютонов (10 и более кгс).

Внешний вид сервопривода производственникам, возможно, напомнит пульт, которым комплектуются электротельферы и другие ГПМ управляемые с пола – небольшая коробочка с длинным проводом.

Этот сервопривод развивает усилие в 110Н (11 кгс).

Этот сервопривод развивает усилие в 110Н (11 кгс).

Термоголовка

Термостатическая головка по сравнению с перечисленными выше приборами для автоматизации отопления обеспечивает минимум возможностей: она не программируется и не управляется дистанционно. Однако устройство привлекает свой дешевизной и полной энергонезависимостью.

Как работает термоголовка? Она использует свойство жидкостей и газов расширяться при нагреве.

При увеличении температуры внутри корпуса рабочее тело увеличивается в объеме и при посредничестве клапана перекрывает поток теплоносителя; при уменьшении температуры процесс инвертируется. Устройство может использовать выносной термодатчик, соединяющийся с корпусом тонкой трубкой.

Несложный винтовой механизм позволяет регулировать заданную степень нагрева корпуса или термодатчика. В большинстве случаев термостатические головки можно видеть в качестве дросселирующей арматуры на коллекторе обратки: с их помощью задается оптимальная температура теплоносителя на выходе контура.

Понятно, что их функциональность проигрывает комплекту из термостата, клапан и сервопривода; зато прибор куда дешевле и проще в монтаже.

Здесь термоголовка с выносным датчиком использована в узле смешения.

Здесь термоголовка с выносным датчиком использована в узле смешения.

Заключение

Как видите, в вашем распоряжении масса средств разной сложности, позволяющих автоматизировать низкотемпературное отопление. Несколько любопытных решений вы найдете в видео в этой статье. Успехов!

Евгений
Author: Евгений